Sketching for Large-Scale Learning of Mixture Models

<u>N. Keriven</u>^{\star §} A. Bourrier[†] R. Gribonval[§] P. Pérez[‡]

* Université Rennes 1, France
 § INRIA Rennes-Bretagne Atlantique, France
 † Gipsa-Lab, St-Martin-d'Hères, France
 ‡ Technicolor, Cesson Sévigné, France

GdR ISIS, 9 Juin 2016

Outline

- Proposed Algorithm
- 3 Sketching GMM

5 Theoretical guarantees ?

6 Conclusion

Introduction •0000	Proposed Algorithm	Sketching GMM	Results 000	Theoretical guarantees ?	Conclusion
	<u> </u>				

Paths to Compressive Learning

Objective

Learn parameters Θ from a large database $(\mathbf{x}_1, ..., \mathbf{x}_N) \in \mathbb{R}^n$.

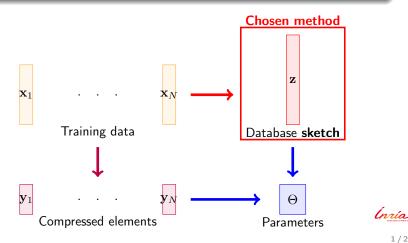
Examples:

- Learn subspace V_{Θ} of principal components
- Learn parameters of a classifier f_{Θ}
- Fit a probability distribution p_{Θ}
- ...

Introduction •0000	Proposed Algorithm	Sketching GMM	Results	Theoretical guarantees ?	Conclusion
	. .				

Paths to Compressive Learning

Objective Learn parameters Θ from a large database $(\mathbf{x}_1, ..., \mathbf{x}_N) \in \mathbb{R}^n$.



Introduction 0●000	Proposed Algorithm	Sketching GMM	Results 000	Theoretical guarantees ?	Conclusion
In this t	alk				

In this talk

Efficient method for Gaussian Mixture Model (GMM) estimation from a sketch.

Example :

Estimation of a $20\text{-}\mathsf{GMM}$ from a database of $N=10^6$ vectors in \mathbb{R}^{10}

- $\bullet\ 5000\mbox{-}{\rm fold}$ compression of the database
 - Can be performed efficiently on GPU / clusters
- \bullet Estimation process $70\times$ faster than EM
- Same precision than EM in the result

Introduction Proposed Algorithm Sketching GMM Results Theoretical guarantees ? Conclusion Approach : Generalized Compressive Sensing

Traditional Compressive Sensing (CS)

From $\mathbf{y} \approx \mathbf{M} \mathbf{x} \in \mathbb{R}^m$ recover vector $\mathbf{x} \in \mathbb{R}^n$

• Linear
$$\mathbf{M} \in \mathbb{R}^{m imes n}$$
 with $m < n$

• Typical assumption: x sparse, etc.

Generalized Compressive Sensing

From $\mathbf{z} \approx \mathcal{A}p \in \mathbb{C}^m$ recover probability distribution $p \in L^1(\mathbb{R}^n)$

Must define:

- Linear operator $\mathcal{A}: L^1(\mathbb{R}^n) \mapsto \mathbb{C}^m$
- Generalized "sparsity" in $L^1(\mathbb{R}^n)$

Introduction 000●0	Proposed Algorithm	Sketching GMM	Results	Theoretical guarantees ?	Conclusion
C	1 1 1 1 1 1		N 4 · .		

Sparse probability distributions: Mixture Models

- K-sparse vectors: combination of K "basic" elements
- "*K*-sparse" probability distributions :

$$p_{\Theta, \alpha} = \sum_{k=1}^{K} \alpha_k p_{\theta_k}$$

$$\mathcal{D} = \{ \mathcal{A} p_{\boldsymbol{\theta}}; \ \boldsymbol{\theta} \in \mathcal{T} \}$$

Challenge

Possibly infinite / continuous dictionary \mathcal{D} .

unía

Introduction 0000●	Proposed Algorithm	Sketching GMM	Results 000	Theoretical guarantees ?	Conclusion
	_				

Application to Compressive Learning

From theoretical Generalized CS...

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{Alg.} p_{\Theta, \alpha}$$

...to practical Compressive Learning:

$$\hat{p} = \frac{1}{N} \sum_{i} \delta_{\mathbf{x}_{i}} \xrightarrow{\mathcal{A}} \hat{\mathbf{z}} = \mathcal{A}\hat{p} \xrightarrow{Alg.} p_{\hat{\Theta},\hat{\mathbf{a}}}$$

where $(\mathbf{x}_1, ..., \mathbf{x}_N) \stackrel{i.i.d.}{\sim} p$.

Questions:

- Reconstruction algorithm ? (Part 2)
- Choice of sketching operator \mathcal{A} ? (Part 3)
- Empirically/theoretically valid ? (Parts 4 and 5)

Outline

Proposed Algorithm

3 Sketching GMM

6 Conclusion

Introduction 00000	Proposed Algorithm •000	Sketching GMM	Results	Theoretical guarantees ?	Conclusion
Approa	~h				

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{\operatorname{Alg.}} p_{\Theta, \alpha}$$

Cost function

$$\min_{\Theta, \boldsymbol{\alpha}} \|\mathbf{z} - \mathcal{A} p_{\Theta, \boldsymbol{\alpha}}\|_2$$

• Similar to
$$\min_{\mathbf{x}:\|\mathbf{x}\|_0 \leq s} \|\mathbf{y} - \mathbf{M}\mathbf{x}\|_2$$
 in CS.

- **Pros:** Under some hypothesis on *G* and *A*, yields provably good solutions with high probability (Section 5)
- Cons: Generally highly non-convex / intractable
 - Convex relaxation (Bunea 2010): seems difficult because of infinite / continuous dictionary
 - Greedy approaches: approach retained here

Introduction 0000

Proposed Algorithm

Sketching GMM

Results

Theoretical guarantees ?

Conclusion

Orthogonal Matching Pursuit with Replacement

• OMP: add an atom to the support by maximizing its correlation to the residual, update the residual, repeat.

Proposed Algorithm Introduction Sketching GMM Results 0000

Theoretical guarantees ?

Conclusion

Orthogonal Matching Pursuit with Replacement

• OMP

- OMP with Replacement (Jain 2011)
 - More iterations than OMP, Hard Thresholding step.

Similar to CoSAMP or Subspace Pursuit.

Introduction 00000 Proposed Algorithm

Sketching GMM

Results

Theoretical guarantees ? 0000

Conclusion

Orthogonal Matching Pursuit with Replacement

- OMP
- OMP with Replacement (Jain 2011)
 - More iterations than OMP, Hard Thresholding step.
- Compressive Learning OMPR (proposed)
 - Non-negativity on weights lpha
 - $\bullet~$ Continuous dictionary $\longrightarrow {\sf gradient~descents}$
 - Add a global optimization step.

Introduction 00000 Proposed Algorithm

Sketching GMM

Results

Theoretical guarantees ? 0000

Conclusion

Orthogonal Matching Pursuit with Replacement

- OMP
- OMP with Replacement (Jain 2011)
 - More iterations than OMP, Hard Thresholding step.
- Compressive Learning OMPR (proposed)
 - Non-negativity on weights lpha
 - Continuous dictionary \longrightarrow gradient descents
 - Add a global optimization step.

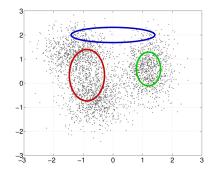
Number of iterations	Compressive Sensing	Compressive Learning
K	OMP	CLOMP
2K	OMPR	CLOMPR

Introduction 00000	Proposed Algorithm ○○●○	Sketching GMM	Results 000	Theoretical guarantees ?	Conclusion
C					

Compressive Learning OMPR

 $\mbox{Example}$: iteration 4 of CLOMPR, searching for a $3\mbox{-}GMM$

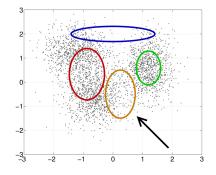
• Current support



	ntroduction	Proposed Algorithm ○○●○	Sketching GMM	Results	Theoretical guarantees ?	Conclusion
(Compres	sive Learning	OMPR			

Example : iteration 4 of CLOMPR, searching for a 3-GMM

• Add an atom to the support with a gradient descent: $\arg \max_{\theta} Re \left\langle \mathbf{r}, \frac{Ap_{\theta}}{\|Ap_{\theta}\|_{2}} \right\rangle$

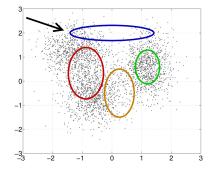


Introduction 00000	Proposed Algorithm ○○●○	Sketching GMM	Results 000	Theoretical guarantees ?	Conclusion
Compro	cciva Loornin				

Compressive Learning OMPR

Example : iteration 4 of CLOMPR, searching for a $3\mathchar`-GMM$

• Hard Thresholding to reduce the support

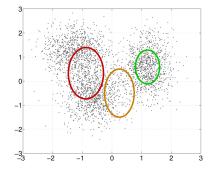


Introduction 00000	Proposed Algorithm ○○●○	Sketching GMM	Results 000	Theoretical guarantees ?	Conclusion
Compro	cciva Loornin				

Compressive Learning OMPR

Example : iteration 4 of CLOMPR, searching for a $3\mathchar`-GMM$

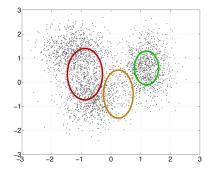
• Hard Thresholding to reduce the support



Introdι 00000		osed Algorithm	Sketching GMM	Results 000	Theoretical guarantees ?	Conclusion
Cor	npressive	e Learning	OMPR			

Example : iteration 4 of CLOMPR, searching for a 3-GMM

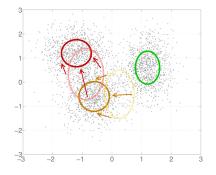
- Hard Thresholding to reduce the support
- Solve a Non-negative Least Squares to find the weights α .



Introduction	Proposed Algorithm ○○●○	Sketching GMM	Results 000	Theoretical guarantees ?	Conclusion
Compre	essive Learning	g OMPR			

Example : iteration 4 of CLOMPR, searching for a $3\text{-}\mathsf{GMM}$

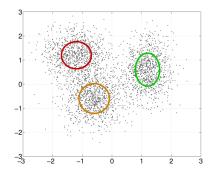
• New step: global gradient descent initialized with the current parameters to further reduce $\|\mathbf{z} - Ap_{\Theta, \alpha}\|_2$



Introduction 00000	Proposed Algorithm ○○●○	Sketching GMM	Results 000	Theoretical guarantees ?	Conclusion
Compre	ssive Learning	g OMPR			

Example : iteration 4 of CLOMPR, searching for a 3-GMM

- New step: global gradient descent initialized with the current parameters to further reduce $\|\mathbf{z} Ap_{\Theta, \alpha}\|_2$
- Update residual.



Introduction 00000	Proposed Algorithm 000●	Sketching GMM	Results 000	Theoretical guarantees ?	Conclusion
What is	left ?				

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{CLOMP(R)} p_{\Theta, \alpha} = \sum_{k} \alpha_{k} p_{\theta_{k}}$$

To perform CLOMP(R), Ap_{θ} and $\nabla_{\theta}Ap_{\theta}$ must have a closed-form expression.

- Here:
 - GMMs with diagonal covariance
- Soon-to-be-released toolbox:
 - K-means
 - full GMMs
 - Gaussian regression
 - α -stable (in progress)
 - User-defined !

Outline

Introduction

Proposed Algorithm

3 Sketching GMM

4 Results

5 Theoretical guarantees ?

6 Conclusion

Introduction	Proposed Algorithm	Sketching GMM	Results	Theoretical guarantees ?	Conclusion
00000	0000	00000	000	0000	

Model: Gaussian mixture

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{CLOMP(R)} p_{\Theta, \alpha} = \sum_{k} \alpha_{k} p_{\theta_{k}}$$

Gaussian Mixture Model

 $p_{oldsymbol{ heta}} = \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$ with diagonal $oldsymbol{\Sigma}$

Introduction	Proposed Algorithm	Sketching GMM	Results	Theoretical guarantees ?	Conclusion
00000	0000	0000	000	0000	

Sketching operator

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{CLOMP(R)} p_{\Theta, \alpha}$$

Random Sampling of the characteristic function (Bourrier 2013)

Denote $\psi_p(\boldsymbol{\omega}) = \mathbb{E}_{\mathbf{x} \sim p}(e^{i\boldsymbol{\omega}^T \mathbf{x}})$. Given $(\boldsymbol{\omega}_1, ..., \boldsymbol{\omega}_m) \in \mathbb{R}^n$, define

$$\mathcal{A}p = \frac{1}{\sqrt{m}} \Big[\psi_p(\boldsymbol{\omega}_j) \Big]_{j=1,\dots,n}$$

- Closed-form for GMMs
- Analog to Random Fourier Sampling: $(oldsymbol{\omega}_1,...,oldsymbol{\omega}_m)\stackrel{i.i.d.}{\sim}\Lambda$
- $\hat{\mathbf{z}} = \frac{1}{\sqrt{m}} \left[\frac{1}{N} \sum_{i} e^{i \boldsymbol{\omega}_{j}^{T} \mathbf{x}_{i}} \right]_{j=1,...,m}$ easily computable (distributed, GPU, streaming...)

Introduction	Proposed Algorithm	Sketching GMM	Results	Theoretical guarantees ?	Conclusion
00000	0000	00000	000	0000	

To summarize

$$\hat{p} \xrightarrow{\mathcal{A}} \hat{\mathbf{z}} = \mathcal{A}\hat{p} \xrightarrow{CLOMP(R)} p_{\Theta, \alpha}$$

Given a database $\mathcal{X} = (\mathbf{x}_1, ..., \mathbf{x}_N) \in \mathbb{R}^n$, m, K:

- Design \mathcal{A}
 - ${\, \bullet \,}$ Choose the frequency distribution Λ
 - Draw m frequencies $(\boldsymbol{\omega}_1,...,\boldsymbol{\omega}_m)\in\mathbb{R}^n$

• Compute
$$\hat{\mathbf{z}} = \frac{1}{\sqrt{m}} \left[\frac{1}{N} \sum_{i} e^{\mathbf{i} \boldsymbol{\omega}_{j}^{T} \mathbf{x}_{i}} \right]_{j=1,\dots,m}$$

• GPU, distributed computing, etc.

• Throw away \mathcal{X} !

• Privacy preserving

• Estimate a K-GMM $p_{\Theta,\alpha}$ from \hat{z} using CLOMP(R).

Introduction	Proposed Algorithm	Sketching GMM	Results	Theoretical guarantees ?	Conclusion
00000	0000	00000	000	0000	

To summarize

$$\hat{p} \xrightarrow{\mathcal{A}} \hat{\mathbf{z}} = \mathcal{A}\hat{p} \xrightarrow{CLOMP(R)} p_{\Theta, \alpha}$$

Given a database $\mathcal{X} = (\mathbf{x}_1, ..., \mathbf{x}_N) \in \mathbb{R}^n$, m, K:

- Design \mathcal{A}
 - ${\, \bullet \,}$ Choose the frequency distribution Λ
 - Draw m frequencies $(\boldsymbol{\omega}_1,...,\boldsymbol{\omega}_m)\in\mathbb{R}^n$

• Compute
$$\hat{\mathbf{z}} = \frac{1}{\sqrt{m}} \left[\frac{1}{N} \sum_{i} e^{\mathbf{i} \boldsymbol{\omega}_{j}^{T} \mathbf{x}_{i}} \right]_{j=1,...,m}$$

• GPU, distributed computing, etc.

• Throw away \mathcal{X} !

• Privacy preserving

• Estimate a K-GMM $p_{\Theta,\alpha}$ from \hat{z} using CLOMP(R).

Introduction 00000	Proposed Algorithm	Sketching GMM 000●0	Results 000	Theoretical guarantees ?	Conclusion
.		10.10			

Designing the frequency distribution

The frequency distribution must "scale" with (the variances of) the GMM.

Approach 1 Optimize the variance of a Gaussian frequency distribution

- Ex : cross-validation with likelihood
- Classical choice (Sutherland 2015)

Introduction 00000	Proposed Algorithm	Sketching GMM 000€0	Results 000	Theoretical guarantees ?	Conclusion
D · ·		12.1.1			

Designing the frequency distribution

The frequency distribution must "scale" with (the variances of) the GMM.

Approach 1 Optimize the variance of a Gaussian frequency distribution Approach 2 Proposed:

- Partial preprocessing to compute the appropriate "scaling"
- Distribution that aims at maximizing $\|\nabla_{\theta}\psi_{p_{\theta}}\|_2$

The proposed distribution

- Yields better precision in the reconstruction
- Is $20\times$ to $100\times$ faster to design

Introduction 00000	Proposed Algorithm	Sketching GMM 0000●	Results	Theoretical guarantees ?	Conclusion
To sum	marize (2)				

$$\hat{p} \xrightarrow{\mathcal{X} \to \Lambda \to \mathcal{A}} \hat{\mathbf{z}} = \mathcal{A}\hat{p} \xrightarrow{CLOMP(R)} p_{\Theta, \alpha}$$

Given a database $\mathcal{X} = (\mathbf{x}_1, ..., \mathbf{x}_N) \in \mathbb{R}^n$, m, K:

- Design \mathcal{A}
 - Partial preprocessing to choose the frequency distribution Λ
 - Draw m frequencies $(\boldsymbol{\omega}_1,...,\boldsymbol{\omega}_m)\in\mathbb{R}^n$

• Compute
$$\hat{\mathbf{z}} = \frac{1}{\sqrt{m}} \left[\frac{1}{N} \sum_{i} e^{\mathbf{i} \boldsymbol{\omega}_{j}^{T} \mathbf{x}_{i}} \right]_{j=1,...,m}$$

• GPU, distributed computing, etc.

• Throw away \mathcal{X} !

• Privacy preserving

• Estimate a K-GMM $p_{\Theta,\alpha}$ from \hat{z} using CLOMP(R).

Outline

Introduction

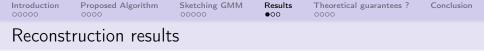
Proposed Algorithm

3 Sketching GMM

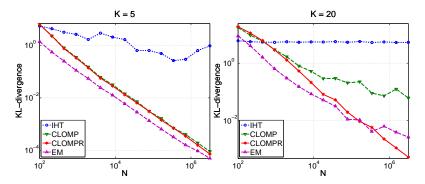
4 Results

5 Theoretical guarantees ?

6 Conclusion

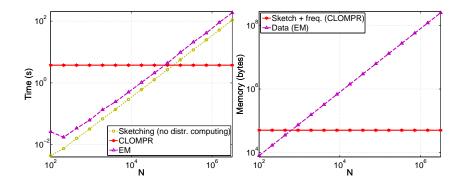


Comparison with EM (VLFeat toolbox) and previous Compressive Learning IHT (Bourrier 2013). KL-div (lower is better), n = 10, m = 5(2n + 1)K.



Introduction 00000	Proposed Algorithm	Sketching GMM	Results 0●0	Theoretical guarantees ?	Conclusion
N 4					

Memory usage and computation time



• Remember : Sketching easily done on GPU/cluster

Introduction 00000	Proposed Algorithm	Sketching GMM	Results 00●	Theoretical guarantees ?	Conclusion
Applicat	tion : speake	r verificatio	n		

- NIST2005 database with MFCCs
- Classical method (Reynolds 2000), not state-of-the-art but serves as a proof of concept

		FM		
	$m = 10^3$	$m = 10^4$	$m = 10^5$	
$N = 3.10^5$	37.15	30.24	29.77	29.53
$N = 2.10^8$	36.57	28.96	28.59	N/A

- A large database enhances the quality of the sketch
- Limitations are observed for large K : difficult "sparse approximation" task of a non-sparse distribution

Outline

Introduction

- Proposed Algorithm
- 3 Sketching GMM

4 Results

5 Theoretical guarantees ?

6 Conclusion

Introduction	Proposed Algorithm	Sketching GMM	Results	Theoretical guarantees ?	Conclusion
00000	0000	00000	000	●000	

Information preservation guarantees ?

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{CLOMP(R)} p_{\Theta, \alpha}$$

• CLOMP(R) attempts to solve $\min_{\Theta, \alpha} \|\mathbf{z} - \mathcal{A}p_{\Theta, \alpha}\|_2$

Introduction	Proposed Algorithm	Sketching GMM	Results	Theoretical guarantees ?	Conclusion
00000	0000	00000	000	●000	

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{CLOMP(R)} p_{\Theta, \alpha}$$

• CLOMP(R) attempts to solve $\min_{\Theta, \alpha} \|\mathbf{z} - \mathcal{A}p_{\Theta, \alpha}\|_2$

• Difficult to obtain guarantees for CLOMP(R): non-convex, random...

Introduction	Proposed Algorithm	Sketching GMM	Results	Theoretical guarantees ?	Conclusion
00000	0000	00000	000	●000	

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{CLOMP(R)} p_{\Theta, \mathbf{a}}$$

• CLOMP(R) attempts to solve $\min_{\Theta, \alpha} \| \mathbf{z} - \mathcal{A} p_{\Theta, \alpha} \|_2$

- Difficult to obtain guarantees for $\mathsf{CLOMP}(\mathsf{R}):$ non-convex, random...
- More fundamentally: if we were able to exactly solve

$$\min_{p\in\Sigma} \|\mathbf{z} - \mathcal{A}p\|_2,$$

with Σ "low-dimensional" set of distribution (e.g. $K\mbox{-sparse}$ GMMs), do we have any guarantee ?

Introduction 00000	Proposed Algorithm	Sketching GMM	Results 000	Theoretical guarantees ? ○●○○	Conclusion

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{\text{Best algo. possible}} \bar{p} \in \arg\min_{p \in \Sigma} \|\mathbf{z} - \mathcal{A}p\|_2$$

Introduction 00000	Proposed Algorithm	Sketching GMM	Results 000	Theoretical guarantees ? ○●○○	Conclusion

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{\text{Best algo. possible}} \bar{p} \in \arg\min_{p \in \Sigma} \|\mathbf{z} - \mathcal{A}p\|_2$$

• Does z contains "enough" information to recover $p \in \Sigma$?

Introduction 00000	Proposed Algorithm	Sketching GMM	Results 000	Theoretical guarantees ? ○●○○	Conclusion
_					

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{\text{Best algo. possible}} \bar{p} \in \arg\min_{p \in \Sigma} \|\mathbf{z} - \mathcal{A}p\|_2$$

• Does z contains "enough" information to recover $p \in \Sigma$? • Is it stable if $p \notin \Sigma$?

Introduction 00000	Proposed Algorithm	Sketching GMM	Results 000	Theoretical guarantees ? ○●○○	Conclusion
_					

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{\text{Best algo. possible}} \bar{p} \in \arg\min_{p \in \Sigma} \|\mathbf{z} - \mathcal{A}p\|_2$$

- Does z contains "enough" information to recover $p \in \Sigma$?
- Is it stable if $p \notin \Sigma$?
- Is it stable to use $\hat{\mathbf{z}}$ instead of \mathbf{z} ?

Introduction 00000	Proposed Algorithm	Sketching GMM	Results 000	Theoretical guarantees ? ○○●○	Conclusion
1 0					

$$\hat{p} \xrightarrow{\mathcal{A}} \hat{\mathbf{z}} = \mathcal{A}\hat{p} \xrightarrow{\text{Best algo. possible}} \bar{p} \in \arg\min_{p \in \Sigma} \|\hat{\mathbf{z}} - \mathcal{A}p\|_2$$

Main result

(under hypotheses on Σ and Λ)

• W.h.p. on
$$(\mathbf{x}_1,...,\mathbf{x}_N) \stackrel{i.i.d.}{\sim} p^*$$
 and $(\boldsymbol{\omega}_1,...,\boldsymbol{\omega}_m) \stackrel{i.i.d.}{\sim} \Lambda$

$$\gamma_{\Lambda}(p^*, \bar{p}) \le 5d_{TV}(p^*, \Sigma) + \mathcal{O}\left(N^{-\frac{1}{2}}\right) + \eta,$$

- γ_{Λ} "kernel" metric (Sriperumbudur 2010)
- d_{TV} total variation distance between p^* and the model Σ
- η additive error in m

Introduction 00000	Proposed Algorithm	Sketching GMM	Results 000	Theoretical guarantees ?	Conclusion

•
$$K = 1$$
 (toy):
• $\eta = \mathcal{O}(\beta^{-m})$: Good !

Introduction	Proposed Algorithm	Sketching GMM	Results	Theoretical guarantees ?	Conclusion
00000	0000	00000	000	0000	

•
$$K = 1$$
 (toy):
• $\eta = \mathcal{O}(\beta^{-m})$: Good !
• $K \ge 2$:
• $\eta = \mathcal{O}\left(m^{-\frac{1}{2}}\right)$: Worst possible

Introduction	Proposed Algorithm	Sketching GMM	Results	Theoretical guarantees ?	Conclusion
00000	0000	00000	000	0000	

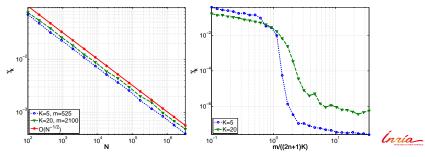
•
$$K = 1$$
 (toy):
• $\eta = \mathcal{O}(\beta^{-m})$: Good !
• $K \ge 2$:
• $\eta = \mathcal{O}\left(m^{-\frac{1}{2}}\right)$: Worst possible !
• Global error in $\mathcal{O}\left(N^{-\frac{1}{2}} + m^{-\frac{1}{2}}\right)$: "compressive" approach ?

Introduction	Proposed Algorithm	Sketching GMM	Results	Theoretical guarantees ?	Conclusion
00000	0000	00000	000	000●	

•
$$K = 1$$
 (toy):
• $\eta = \mathcal{O}(\beta^{-m})$: Good !
• $K \ge 2$:
• $\eta = \mathcal{O}\left(m^{-\frac{1}{2}}\right)$: Worst possible !
• Global error in $\mathcal{O}\left(N^{-\frac{1}{2}} + m^{-\frac{1}{2}}\right)$: "compressive" approach ?
• Conjecture: it is in fact much better !

Introduction	Proposed Algorithm	Sketching GMM	Results	Theoretical guarantees ?	Conclusion
00000	0000	00000	000	0000	

•
$$K = 1$$
 (toy):
• $\eta = \mathcal{O}(\beta^{-m})$: Good !
• $K \ge 2$:
• $\eta = \mathcal{O}\left(m^{-\frac{1}{2}}\right)$: Worst possible !
• Global error in $\mathcal{O}\left(N^{-\frac{1}{2}} + m^{-\frac{1}{2}}\right)$: "compressive" approach ?
• **Conjecture**: it is in fact much better !



Outline

Introduction

- Proposed Algorithm
- 3 Sketching GMM
- 4 Results
- 5 Theoretical guarantees ?

Introduction 00000	Proposed Algorithm	Sketching GMM	Results 000	Theoretical guarantees ?	Conclusion
Conclusion					

Summary

Effective method to learn GMMs from a sketch, using greedy algorithms and an efficient heuristic to design the sketching operator. Empirical and theoretical motivations.

In the journal paper

- Faster algorithm for GMM with large ${\cal K}$
- More on theoretical guarantees

Future Work

- Application to other Mixture Models (K-means, α -stable...)
- Generalized theoretical guarantees
- Application to other kernel methods (Sutherland 2015) (classification...)

${\sf Questions}\ ?$

Keriven et al., Sketching for Large-Scale Learning of Mixture Models, *arXiv:1606.02838*